The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X 1 X X X 1 X 1 1 1 1 1 1 X X^2 X^2 X^2 X^2 X^2 X^2 X^2 X X X X 1 1 1 1 X X X 1 0 X^3 0 0 0 X^3 X^3 X^3 0 0 0 0 X^3 X^3 X^3 X^3 0 0 X^3 0 X^3 0 X^3 X^3 X^3 0 X^3 0 0 X^3 X^3 0 0 X^3 X^3 0 X^3 X^3 0 0 0 X^3 X^3 0 0 X^3 X^3 0 X^3 0 0 0 0 X^3 0 X^3 X^3 X^3 0 0 0 X^3 X^3 X^3 X^3 0 0 0 X^3 X^3 0 0 X^3 X^3 0 0 0 0 X^3 X^3 X^3 X^3 0 X^3 X^3 0 X^3 X^3 0 0 0 X^3 X^3 0 0 X^3 X^3 0 X^3 X^3 0 0 0 0 0 X^3 X^3 0 X^3 X^3 0 X^3 X^3 0 0 X^3 X^3 0 X^3 X^3 0 0 0 0 X^3 X^3 X^3 X^3 0 X^3 0 0 X^3 X^3 X^3 0 0 0 X^3 X^3 X^3 0 X^3 0 0 0 0 X^3 X^3 0 X^3 0 X^3 generates a code of length 51 over Z2[X]/(X^4) who´s minimum homogenous weight is 50. Homogenous weight enumerator: w(x)=1x^0+33x^50+70x^51+6x^52+8x^53+2x^54+1x^56+5x^58+2x^59 The gray image is a linear code over GF(2) with n=408, k=7 and d=200. This code was found by Heurico 1.16 in 0.063 seconds.